

MAGNITUDE OF THE HOMOCONJUGATION EFFECT IN CHIRAL TWO-RING
ENAMINO KETONES

V. M. Potapov, G. V. Grishina,
and G. N. Koval'

UDC 541.653+547.83

On the basis of circular dichroism (CD) and optical rotatory dispersion (ORD) data and an examination of the preferred conformations of two-ring enamino ketones Ia-c [1] with an α -phenylethyl substituent attached to the nitrogen atom, we have proposed the existence of a homoconjugation effect [2] of the enamino ketone and phenyl chromophore groups as a result of the drawing together in space of their π orbitals. An even greater increase in the molecular ellipticity of the positive band of the $\pi-\pi^*$ transition of the enamino ketone chromophore, which attests to intensification of homoconjugation, was observed in the CD spectra of enamino ketones IIa-c, the chromophores in which are separated by three σ bonds.

I a n=1, R=C₆H₅, b n=2, R=C₆H₅, c n=3, R=C₆H₅; II a n=1, R=CH₂C₆H₅, b n=2, R=CH₂C₆H₅, c n=3, R=CH₂C₆H₅; III a n=1, R=C₂H₅, b n=2, R=C₂H₅, c n=3, R=C₂H₅

An examination of the ORD data (in heptane) for model enamino ketones IIIa-c, in which only an enamino ketone chromophore (R = C₂H₅) is present, also showed the presence of a positive Cotton effect with a peak at 350-355 nm and a valley at 315-317 nm with molecular amplitudes +78 (IIIa), +50 (IIIb), and +13.8 (IIIC). These values are substantially lower than the corresponding molecular amplitudes of the Cotton effects for enamino ketones I and II [+480 (Ia), +297 (Ib), +211 (Ic), +652 (IIa), and +454 (IIc)]. The difference between the magnitudes of the molecular amplitudes of the Cotton effects of enamino ketones I, II, and III consequently characterizes the magnitude of the homoconjugation effect of the enamino ketone and phenyl chromophore groups in I and II.

LITERATURE CITED

1. V. M. Potapov, G. V. Grishina, E. V. Korotkov, and G. N. Koval', Khim. Geterotsikl. Soedin., No. 4, 511 (1976).
2. P. Crabbe, The Application of Chiroptical Methods in Chemistry [Russian translation], Moscow (1974), p. 25.

M. V. Lomonosov Moscow State University. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 9, 1286-1287, September, 1976. Original article submitted March 5, 1976.

This material is protected by copyright registered in the name of Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$7.50.